If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+38t+3=0
a = -16; b = 38; c = +3;
Δ = b2-4ac
Δ = 382-4·(-16)·3
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(38)-2\sqrt{409}}{2*-16}=\frac{-38-2\sqrt{409}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(38)+2\sqrt{409}}{2*-16}=\frac{-38+2\sqrt{409}}{-32} $
| 8+5z=5z−5 | | 3(x-4)+5=10x-6 | | 2=k/4-10 | | 6.3-3x=0 | | 8x+6x+12-3x=8 | | 1/2x-4=3/8x+5 | | 3x-3=-7+8(x-2) | | -9s=-9s−8 | | 32x=9x | | 7+8b=8b+7 | | 3t-10=3t+8 | | x-8÷12=11 | | 6x+49=-6 | | 14/8=7x | | 12x^2+12=-25x | | -6u=-9-5u | | 4.1x+2.5=3x+4.7 | | -8u=-4u-4u | | 2^x-1=8 | | 2y+15=6(-2y-5) | | -1-4j=5-4j | | 12x^2+12=-25 | | 6x1/2=72 | | -1-4j=54j | | -4=5+7215)n≠3n2 | | 42.9b-0.692=11.748 | | 2f-1=-1+2f | | 40-6x=50-10x | | 2(5+2n)=6 | | x-19=98 | | 4g=-9+4g | | 3x+3=2(x+ |